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Abstract. We investigate the influence of boundary conditions on the results of Monte Carlo
simulations of 2D random tilings. Looking at the fluctuations in internal space we compare
fixed and periodic boundaries. We find that fixed boundary conditions will lead to a different
random tiling ensemble with reduced finite-size entropy density in comparison with periodic
boundary conditions. As a by-product, we derive improved estimates for the elastic constants of
the octagonal rhombus-tiling ensemble. Finally, we introduce a robust tool, also suitable for the
analysis of experimental data, to distinguish between quasiperiodic and random-tiling models.

1. Introduction

Since the very beginning of quasicrystal research, 2D or 3D quasiperiodic tilings have been
used to describe the geometric structure of these new intermetallic alloys. Even before
the publication of the experimental observation [1], the standard examples for 2D and
3D ideal tilings, the Penrose tiling [2] and the Ammann–Kramer tiling [3], respectively,
were known. Shortly after these publications, Elser [4] pointed out that one could relax
the mathematical construction of the ideal tilings without disturbing some of their key
features. Both models, ideal-quasiperiodic and random, continue to be pursued as the
correct description of quasicrystalline alloys. Ideal tilings (with zero entropy density) are
considered to be stabilized energetically [5] whereas in random tiling ensembles a positive
entropy density is essential to minimize the free energy [6].

Focusing on the random-tiling scenario, one would like to determine the entropy density
exactly. Unfortunately, until now, this has been essentially restricted to 1D. In 2D there
are only very few quasicrystalline examples which have been solved exactly, such as the
square–triangle tiling (12-fold) [7] and the rectangle–triangle tilings (eight-fold) [8]. In 3D
there is no exact solution in sight for any example. Therefore one has to rely on numerical
studies based upon Monte Carlo simulations (MC) or transfer matrix techniques.

One of the most prominent examples is the eight-fold Ammann–Beenker tiling [9],
sometimes also called the octagonal rhombus tiling. In contrast to the situation of the
rectangle–triangle tiling [8], it was not possible to find an exact solution for this random
tiling ensemble, although it clearly has a positive entropy density. Therefore, various
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numerical studies were performed with slightly non-unique results for the entropy density†:

σ = 0.4341(4) transfer matrix calculation (free b.c.) [10]

σ = 0.39(1) MC simulation (fixed b.c.) [11]

σ = 0.431(5) MC simulation (periodic b.c.) [12]

σ = 0.432(2) MC simulation (periodic b.c.) [13]

(1)

where free b.c., fixed b.c. and periodic b.c. stand for free, fixed and periodic boundary
conditions, respectively. These numbers, and various other preliminary ones, have caused
some confusion about the reliability of the numerical estimates. In all MC simulations,
the standard hexagon flip (also called simpleton flip) approach was used to generate the
random tiling ensemble starting from the ideal tiling or a periodic approximant. There exist
arguments for both periodic [14] and fixed boundary conditions [15] that these flips are
ergodic (i.e. each member of the corresponding ensemble can be reached by finitely many
simpleton flips) wherefore one expects the simulations to give the correct entropy density.
Nevertheless, a significant difference between simulations with periodic and fixed boundary
conditions remains in 2D.

In a numerical simulation, the entropy density of a system is nearly the worst variable
one could try to measure. One standard technique is to integrate the specific heat over
temperature, which in turn can be obtained as the variance of the energy distribution of
the tiling ensemble. Other methods are the histogram method and the method of entropic
sampling [16], which are more efficient, but still rather computationally time consuming.
So, numerical approaches to entropy require quite a lot of time, even on modern computers.

A more accessible variable is the ensemble average〈h2〉 of the varianceh2 of the
distribution of the coarse grained internal space coordinateshi of the ensemble members:

h2 = 1

N − 1

N∑
i=1

(hi − h)2 h = 1

N

N∑
i=1

hi. (2)

Although it is hard to come up with a rigorous relation between the variance in internal
space and the entropy density, without making crucial assumptions, it is conceivable and
widely accepted that〈h2〉 is the dominant term for the entropy density as a function of the
system size.

In 1D this variance should be propotional to the length of the chain because the problem
is equivalent to a random walk. The result is essentially the same for both boundary
conditions. In 2D, the hydrodynamic approximation (see [6]) tells us that

〈h2〉 = 1

2πKeff

ln(N) + b (3)

whereKeff is a combination of the elastic constants,N the number of vertices of the patch
andb an additional constant due to integration of the elastic tensor in momentum space. (In
3D, the varianceh2 remains bounded on the ensemble [6], so one would expect a smaller (if
any) influence from boundary conditions and, in particular, power-law finite-size scaling.)

2. Influence of boundary conditions

We compared the influence of boundary conditions in the following way. For periodic
b.c. we started from five successive periodic approximants with 239, 1393, 8119, 47 321

† The entropy density is given here as entropy/vertex. In the tilings under consideration, the squares fill half of
the plane, so vertices/area = 1.2071.
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and 275 807 vertices, respectively, and randomized them using simpleton flips. After a
first thermalization period of approximately 10 000 flips per vertex we took a snapshot of
the configuration at timet1 and calculatedh2(N, t1). Then we thermalized again and took
another snapshot att2. At the end, we took the average over allh2(N, ti), i = 1, . . . , 5000,
as an estimate for the ensemble average. For fixed b.c. we started from circular ideal patches
with zero internal strain. The vertices on the boundary of the patch were held fixed during
the simulation. To take a circularly shaped patch is important because longer linear edges
as in octagons can impose a tremendous effect on the entropy of the tilings even in the
thermodynamic limit, as was shown for the hexagonal rhombus tiling by Elser [17].

Figure 1 shows a typical distribution of the internal coordinates after thermalization,
figure 2 the variance for the different boundary conditions (bond length= 1). In both cases
the hydrodynamic description is well reproduced. The logarithmic divergence is clearly

Figure 1. Distribution of internal coordinates of the randomized Ammann–Beenker tiling.

Figure 2. The (ensemble averaged) variance of the distribution of the internal coordinates of
the Ammann–Beenker tiling versus the number of vertices of the patch: periodic (×) and fixed
(◦ ) boundary conditions, bond length= 1.
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seen and a fit to both data sets leads to:

〈h2〉periodic b.c. = 0.246(3) ln(N) + 0.211(12)

〈h2〉fixed b.c. = 0.241(6) ln(N) + 0.020(12).
(4)

The slope of both lines coincides within the fit errors. Therefore

〈h2〉periodic b.c.

〈h2〉fixed b.c.

→ 1

in the limit N → ∞. The influence of the boundary conditions on finite systems is contained
in the additive constant. It is fairly large for nearly all practical patch sizes and matches
the difference which occurs in the simulations of the entropy densities.

The rapid convergence (with consistent finite-size scaling behaviour) of the numerical
estimates of the entropy density in the case of periodic b.c. [12, 13] leads to the conclusion
that, with periodic boundary conditions, no logarithmic corrections are present in the MC
calculations (see also [10] for a similar result on the transfer matrix approach).

This situation is rather different, however, for other boundary conditions where the
simulations rather indicate that logarithmic corrections are present. Indeed, in view of (4),
corrections of the order of(0.191)/ ln(N) in the determination of the variance〈h2〉 with
fixed b.c. should be expected. UsingN = 10 000, the fixed boundary entropy calculation
of [11] would therfore be expected to receive a correction of about 0.04(2) per vertex. So,
both periodic b.c. and fixed b.c. lead to different finite-size random tiling ensembles, though
they seem give the same entropy density in the thermodynamic limit, as long as one ensures
zero strain for the boundary (otherwise this statement will not be true).

On the other hand, there is another characteristic feature of the random tiling ensemble,
namely its phasonic elasticity. In the case of the octagonal tiling it is usually summarized
by the elastic constantsK1, K2 andK3 or by the combinations

Keff = Kα − K2
β

Kα

Kα = 1
2(K1 + K2) + K3

Kβ = 1
2(K1 − K2).

(5)

From our previous discussion, we may actually conclude that they are the same for both
boundary conditions. From the transfer matrix approach [10] it was possible to calculate
K1 andK3 with small errors. The estimation ofK2, however, was rather imprecise. Using
now the much better estimate ofKeff from our MC simulations and combining it with the
previous estimates ofK1 andK3 of [10], one can calculateK2 with its error reduced to one
third. This way one obtains the improved estimates

K1 = 0.26(1) K2 = 0.374(40) K3 = 0.342(4). (6)

At this point, we have explained how the different estimates of the entropy density fit
together and, as a by-product, improved the precision of the estimate of the elastic constant
K2 for the eight-fold rhombus tiling ensemble.

It is still an open question to what extent random tilings occur in nature, and how to
decide whether random or quasiperiodic order is the right idealization. Let us therefore
change our focus and discuss this practical issue.
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3. How to distinguish random from quasiperiodic tilings

The variance of the coarse grained internal coordinates is in principle a good tool to
distinguish between random tilings and ideal quasiperiodic tilings in 2D. For the former,
we have a logarithmic divergence with the patch size†. For the latter, the variance is of
course constant, no matter how large the patch is. Therefore, 2D is in some sense a critical
dimension between the 1D (linear divergence) and the 3D (constant variance) cases. On the
other hand, one has to face the practical problem that the patch sizes which can be studied
by an experimentalist in HRTEM images are typically rather small, i.e. in the region of a
few hundred vertices only.

Below the size of 100 vertices, the statistics is too low to say anything with certainty.
One has to engage other arguments such as the total spread of the internal cloud or details
of its fall-off at the shoulders, neither of which are sufficiently reliable either. Nevertheless,
this variance test has been applied to experimental tilings of decagonal phases [18, 19], but
without conclusive results.

In what follows, we would like to introduce a simple method to distinguish between
2D ideal quasiperiodic tilings and random tilings with a higher accuracy even if one has to
face low statistics (say 500 vertices) or defects.

The inspection of the variance of the internal coordinates is motivated by the
hydrodynamic approximation. The variance is the second moment of the statistical
distribution of all coordinates in internal space, but the distribution itself contains a lot
more information, because it encodes the correlation between the atomic position in physical
space. One possibility to gain more insight is to inspectall statistical moments. The simplest
way of doing it is to employ the Fourier transformation (FT) of the distribution of points
in internal space. Let us explain why.

The FT of a distribution is the generating function of its statistical moments, i.e. they
appear in the coefficients of the Taylor expansion of the FT aroundk = 0 (see [20] or any
standard text on probability). Consequently, the FT of the distribution of the coordinates in
internal space should be a better tool than the variance alone to distinguish between 2D ideal
quasiperiodic tilings and random tilings with the same (average) symmetry. This proves
true indeed, both in theoretical toy models (to be described below) and in real experiments
(to be described in [21]). Especially if the statistics is poor and tiling errors are involved,
one can do better this way than by using〈h2〉 only.

To demonstrate our assertion, we again use the Ammann–Beenker tiling as a toy model.
The ideal eight-fold quasiperiodic tiling has a dense and uniformly filled octagon as its
acceptance domain, with simple FT. For the general argument, it is enough to approximate
this octagon by a circle of the same area. The FT of a filled circle of radiusR is

2πR

k
J1(kR) (7)

whereJ1 is the first Bessel function andk the absolute value of the wavevector. On the
other hand, the internal coordinates of therandomtiling ensemble of the Ammann–Beenker
tiling approximate a Gaussian function‡ (figure 1). This is of course transformed into another
Gaussian under FT.

Therefore, the FT of the internal cloud is an oscillating function in the case of the ideal
tiling and approximates a Gaussian in the case of the random tiling (see figures 3 and 4).

† Here and in what follows we assume that the single member of the random tiling ensemble under consideration
is typical, i.e. its individual distribution actually equals or approaches that of the ensemble average.
‡ This behaviour doesnot depend on boundary conditions.
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Figure 3. Absolute value of the Fourier transform of the distribution of the internal coordinates
for a circular patch of 500 vertices of the ideal quasiperiodic Ammann–Beenker tiling.

Figure 4. Absolute value of the Fourier transform of the distribution of the internal coordinates
for a patch of 500 vertices of a randomized Ammann-Beenker tiling. Boundary conditions have
only a minor influence on the essential features of the FT and can be neglected.

Both should behave differently even if tiling errors are involved, and the question of
whether an experimental sample belongs to the class of 2D ideal quasiperiodic tilings or to
the class of the random tilings should be decidable at least on the scale of the tiling. There
is one (hypothetical) situation which could lead to a wrong result. If the indexed tiling is
only an ideal decoration of a random tiling (supertiling) with much larger bond lengths,
one would Fourier transform the convolution of the lifted decoration with a small Gaussian.
This would also give an oscillating function. However, the necessary bond lengths of the
supertilings are rather large. In a typical experimental situation this can often be ruled out:
on the one hand, a decision between both tiling classes would make no sense if only a
few supertiles would remain. On the other hand, one should find a clear signature of this
supertiling in the diffraction data.

For our example we assume that a typical patch contains some 500 vertices (motivated
by what can be reached in experimental HRTEM tilings). Figure 3 shows the absolute value
of the discrete FT of the internal space coordinates of a quasiperiodic patch, figure 4 the
corresponding one of a random patch. The behaviour described above can be clearly seen
in this theoretical (error-free) system. We claim that the typical features of the FT’s do
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also appear in the case of real HRTEM tilings which of course contain defects of various
kinds. (There, a circular integration may be employed for better statistics.) A detailed
application of this approach to the investigation of HRTEM tilings of decagonal AlCoNi
will be reported separately [21].

4. Conclusion

In the first part, we have presented an analysis of the influence of boundary conditions
on results of MC simulations for 2D quasiperiodic tilings. We have found that fixed b.c.
give rise to a significant loss in the variance of the internal coordinates and thus in the
entropy density of the finite-size tiling ensemble. This is caused by logarithmic corrections.
Nevertheless, one key feature of the random tiling, the elastic constants, remain unaffected
and can be determined with fixed b.c. with good precision. In particular, a previous estimate
of the elastic constantK2 of the octagonal rhombus tiling could be improved in this way.

In the second part we have presented the FT of the distribution of the internal coordinates
as a robust tool to distinguish between 2D ideal quasiperiodic tilings and the corresponding
random tilings. We have shown the main features of the FT’s in both cases and we claim
that even under real experimental conditions these properties will be seen. This will be
treated in a forthcoming publication [21].
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